面向工程师的实用机器学习和AI(影印版)
Jeff Prosise
出版时间:2023年03月
页数:400
“如果你想搞明白AI和机器学习究竟是如何工作的,以及这些技术的演变历程和未来发展,那就读读这本书吧。”
——Todd Fine
Atmosera首席战略官“读了这本书会让你忍不住跃跃欲试。”
——Doug Turnure
Microsoft Azure专家

许多AI入门指南可以说都是变相的微积分书籍,但这本书基本上避开了数学。作者Jeff Prosise帮助工程师和软件开发人员建立了对AI的直观理解,以解决商业问题。需要创建一个系统来检测雨林中非法砍伐的声音、分析文本的情感或预测旋转机械的早期故障?这本实践用书将教你把AI和机器学习应用于职场工作所需的技能。
书中的示例和插图来自于Prosise在全球多家公司和研究机构教授的AI和机器学习课程。不说废话,也没有可怕的公式 —— 纯粹就是写给工程师和软件开发人员的快速入门,并附有实际操作的例子。
本书将帮助你:
● 学习什么是机器学习和深度学习及其用途
● 理解流行的机器学习算法原理及其应用场景
● 使用Scikit-Learn在Python中构建机器学习模型,使用Keras和TensorFlow构建神经网络
● 训练回归模型以及二元和多元分类模型并给其评分
● 构建面部识别模型和目标检测模型
● 构建能够响应自然语言查询并将文本翻译成其他语言的语言模型
● 使用认知服务将AI融入你编写的应用程序中
  1. Foreword
  2. Preface
  3. Part I. Machine Learning with Scikit-Learn
  4. 1. Machine Learning
  5. What Is Machine Learning?
  6. Unsupervised Learning with k-Means Clustering
  7. Supervised Learning
  8. Summary
  9. 2. Regression Models
  10. Linear Regression
  11. Decision Trees
  12. Random Forests
  13. Gradient-Boosting Machines
  14. Support Vector Machines
  15. Accuracy Measures for Regression Models
  16. Using Regression to Predict Taxi Fares
  17. Summary
  18. 3. Classification Models
  19. Logistic Regression
  20. Accuracy Measures for Classification Models
  21. Categorical Data
  22. Binary Classification
  23. Multiclass Classification
  24. Building a Digit Recognition Model
  25. Summary
  26. 4. Text Classification
  27. Preparing Text for Classification
  28. Sentiment Analysis
  29. Naive Bayes
  30. Spam Filtering
  31. Recommender Systems
  32. Summary
  33. 5. Support Vector Machines
  34. How Support Vector Machines Work
  35. Hyperparameter Tuning
  36. Data Normalization
  37. Pipelining
  38. Using SVMs for Facial Recognition
  39. Summary
  40. 6. Principal Component Analysis
  41. Understanding Principal Component Analysis
  42. Filtering Noise
  43. Anonymizing Data
  44. Visualizing High-Dimensional Data
  45. Anomaly Detection
  46. Summary
  47. 7. Operationalizing Machine Learning Models
  48. Consuming a Python Model from a Python Client
  49. Versioning Pickle Files
  50. Consuming a Python Model from a C# Client
  51. Containerizing a Machine Learning Model
  52. Using ONNX to Bridge the Language Gap
  53. Building ML Models in C# with ML.NET
  54. Adding Machine Learning Capabilities to Excel
  55. Summary
  56. Part II. Deep Learning with Keras and TensorFlow
  57. 8. Deep Learning
  58. Understanding Neural Networks
  59. Training Neural Networks
  60. Summary
  61. 9. Neural Networks
  62. Building Neural Networks with Keras and TensorFlow
  63. Binary Classification with Neural Networks
  64. Multiclass Classification with Neural Networks
  65. Training a Neural Network to Recognize Faces
  66. Dropout
  67. Saving and Loading Models
  68. Keras Callbacks
  69. Summary
  70. 10. Image Classification with Convolutional Neural Networks
  71. Understanding CNNs
  72. Pretrained CNNs
  73. Using ResNet50V2 to Classify Images
  74. Transfer Learning
  75. Using Transfer Learning to Identify Arctic Wildlife
  76. Data Augmentation
  77. Global Pooling
  78. Audio Classification with CNNs
  79. Summary
  80. 11. Face Detection and Recognition
  81. Face Detection
  82. Facial Recognition
  83. Putting It All Together: Detecting and Recognizing Faces in Photos
  84. Handling Unknown Faces: Closed-Set Versus Open-Set Classification
  85. Summary
  86. 12. Object Detection
  87. R-CNNs
  88. Mask R-CNN
  89. YOLO
  90. YOLOv3 and Keras
  91. Custom Object Detection
  92. Summary
  93. 13. Natural Language Processing
  94. Text Preparation
  95. Word Embeddings
  96. Text Classification
  97. Neural Machine Translation
  98. Bidirectional Encoder Representations from Transformers (BERT)
  99. Summary
  100. 14. Azure Cognitive Services
  101. Introducing Azure Cognitive Services
  102. The Computer Vision Service
  103. The Language Service
  104. The Translator Service
  105. The Speech Service
  106. Putting It All Together: Contoso Travel
  107. Summary
  108. Index
书名:面向工程师的实用机器学习和AI(影印版)
作者:Jeff Prosise
国内出版社:东南大学出版社
出版时间:2023年03月
页数:400
书号:978-7-5766-0657-7
原版书书名:Applied Machine Learning and AI for Engineers
原版书出版商:O'Reilly Media
Jeff Prosise
 
Jeff Prosise是个多面手。作为工程师,他热衷于向其他工程师和软件开发人员宣传人工智能和机器学习的奇迹。他是Wintellect 公司的联合创始人,写过9本书,在杂志上发表过好几百篇文章,在微软培训过几千名开发人员,并在一些规模比较大的全球软件大会上发表过演讲。
另一方面,杰夫在美国橡树岭国家实验室和劳伦斯利弗莫尔国家实验室从事高功率激光系统和聚变能源研究。业余时间,他很喜欢大型遥控喷气式飞机的组装和试飞,还经常前往全球潜水胜地去打卡。2021年公司被收购后,杰夫出任Atmosera公司首席学习官,帮助客户将AI集成到产品中。
 
 
The animal on the cover of Applied Machine Learning and AI for Engineers is a festive parrot (Amazona festiva), also known as a festive amazon. Festive parrots live in the tropical forests, woodlands, and coastal mangroves of several South American countries, including Brazil, Colombia, Ecuador, Peru, and Bolivia. They are rarely found far from water.
Festive parrots are brightly—you might even say festively—colored, medium-sized birds. Their plumage is predominantly a striking green, turning slightly yellow toward the edges of their wings. A motley assortment of colors—including red, blue, and sometimes yellow or orange—adorns their faces.
Festive parrots are a highly social species, usually spotted in pairs or small flocks. Large groups of the birds often gather at night for communal roosts or around a localized food source and are known for being incredibly noisy. They enjoy eating fruits such as mangoes and peach palm, with berries, nuts, seeds, flowers, and leaf buds supplementing their diet.
While still relatively common where their forest habitat remains largely intact, festive parrots have been categorized by IUCN as near threatened due to continued deforestation and predicted declines in habitat.
购买选项
定价:158.00元
书号:978-7-5766-0657-7
出版社:东南大学出版社