可靠的机器学习(影印版)
Cathy Chen, Niall Richard Murphy, Kranti Parisa, D. Sculley, Todd Underwood
出版时间:2023年03月
页数:376
“在将基于机器学习的真实系统投入部署之前,你便能从阅读本书中受益。放心吧,书中的内容来自数十年间来之不易的经验。”
——Andrew Moore
Google Cloud AI副总裁兼总经理

无论你是小型创业公司还是跨国公司的一员,这本实践用书都为你(数据科学家、软件和网站可靠性工程师、产品经理或企业主)展示了如何在组织内可靠、有效和负责地运行和建立机器学习。你将深入了解其中涉及的方方面面,从如何在生产中进行模型监控到如何在产品组织中运营一个完善的模型开发团队。
通过将SRE思维应用于机器学习,作为本书作者和工程专业人士的Cathy Chen、Kranti Parisa、Niall Richard Murphy、D. Sculley、Todd Underwood以及特邀作者向你展示了如何运行高效可靠的机器学习系统。无论你是想增加收入、优化决策、解决问题,还是想理解和影响客户行为,你都将学到如何执行日常的机器学习任务,同时保持更广阔的视野。
本书内容包括:
● 什么是ML:运作方式以及依赖什么
● 用于理解机器学习“环路”如何工作的概念框架
● 有效的生产如何使机器学习系统易于监控、部署和操作
● 为什么机器学习系统使生产故障排除更加困难,以及如何进行相应的补偿
● 机器学习、产品和生产团队如何有效沟通
  1. Foreword
  2. Preface
  3. 1. Introduction
  4. The ML Lifecycle
  5. Lessons from the Loop
  6. 2. Data Management Principles
  7. Data as Liability
  8. The Data Sensitivity of ML Pipelines
  9. Phases of Data
  10. Data Reliability
  11. Data Integrity
  12. Conclusion
  13. 3. Basic Introduction to Models
  14. What Is a Model?
  15. A Basic Model Creation Workflow
  16. Model Architecture Versus Model Definition Versus Trained Model
  17. Where Are the Vulnerabilities?
  18. Infrastructure and Pipelines
  19. A Set of Useful Questions to Ask About Any Model
  20. An Example ML System
  21. Conclusion
  22. 4. Feature and Training Data
  23. Features
  24. Labels
  25. Human-Generated Labels
  26. Metadata
  27. Data Privacy and Fairness
  28. Conclusion
  29. 5. Evaluating Model Validity and Quality
  30. Evaluating Model Validity
  31. Evaluating Model Quality
  32. Operationalizing Verification and Evaluation
  33. Conclusion
  34. 6. Fairness, Privacy, and Ethical ML Systems
  35. Fairness (a.k.a. Fighting Bias)
  36. Privacy
  37. Responsible AI
  38. Responsible AI Along the ML Pipeline
  39. Conclusion
  40. 7. Training Systems
  41. Requirements
  42. Basic Training System Implementation
  43. General Reliability Principles
  44. Common Training Reliability Problems
  45. Structural Reliability
  46. Conclusion
  47. 8. Serving
  48. Key Questions for Model Serving
  49. Model Serving Architectures
  50. Model API Design
  51. Serving for Accuracy or Resilience?
  52. Scaling
  53. Disaster Recovery
  54. Ethics and Fairness Considerations
  55. Conclusion
  56. 9. Monitoring and Observability for Models
  57. What Is Production Monitoring and Why Do It?
  58. Problems with ML Production Monitoring
  59. Best Practices for ML Model Monitoring
  60. Conclusion
  61. 10. Continuous ML
  62. Anatomy of a Continuous ML System
  63. Observations About Continuous ML Systems
  64. Continuous Organizations
  65. Rethinking Noncontinuous ML Systems
  66. Conclusion
  67. 11. Incident Response
  68. Incident Management Basics
  69. Anatomy of an ML-Centric Outage
  70. Terminology Reminder: Model
  71. Story Time
  72. ML Incident Management Principles
  73. Special Topics
  74. Conclusion
  75. 12. How Product and ML Interact
  76. Different Types of Products
  77. Agile ML?
  78. ML Product Development Phases
  79. Build Versus Buy
  80. Sample YarnIt Store Features Powered by ML
  81. Conclusion
  82. 13. Integrating ML into Your Organization
  83. Chapter Assumptions
  84. Significant Organizational Risks
  85. Implementation Models
  86. Organizational Design and Incentives
  87. Conclusion
  88. 14. Practical ML Org Implementation Examples
  89. Scenario 1: A New Centralized ML Team
  90. Scenario 2: Decentralized ML Infrastructure and Expertise
  91. Scenario 3: Hybrid with Centralized Infrastructure/Decentralized Modeling
  92. Conclusion
  93. 15. Case Studies: MLOps in Practice
  94. 1. Accommodating Privacy and Data Retention Policies in ML Pipelines
  95. 2. Continuous ML Model Impacting Traffic
  96. 3. Steel Inspection
  97. 4. NLP MLOps: Profiling and Staging Load Test
  98. 5. Ad Click Prediction: Databases Versus Reality
  99. 6. Testing and Measuring Dependencies in ML Workflow
  100. Index
书名:可靠的机器学习(影印版)
国内出版社:东南大学出版社
出版时间:2023年03月
页数:376
书号:978-7-5766-0552-5
原版书书名:Reliable Machine Learning
原版书出版商:O'Reilly Media
Cathy Chen
 
Cathy Chen曾在Google担任技术项目经理、产品经理和工程经理。
 
 
Niall Richard Murphy
 
Niall Richard Murphy是Google网站可靠性工程组织里曾经和现任的成员,他们的职责是关注和维护Google的生产系统。
 
 
Kranti Parisa
 
Kranti Parisa是Dialpad的副总裁兼产品工程主管。
 
 
D. Sculley
 
D. Sculley是Kaggle的首席执行官和Google第三方机器学习生态系统的总经理。
 
 
Todd Underwood
 
Todd Underwood是Google的高级主管以及机器学习SRE的创始人。
 
 
The insect on the cover of Reliable Machine Learning is the honeypot ant (Myrmecocystus mimicus). Honeypot ants are found in southwest North America and parts of Mexico.
Similar to other ants, honeypot ant colonies consist of a variety of worker ants who scavenge food from flowers, fruit, and other insects. What is most notable about honeypot ants is how they store food. The repletes—one type of worker ant in the colony—grow large abdomens that they use to store the liquid they scavenge. During times when food supply is low, the repletes regurgitate liquid for the rest of the colony to eat. Repletes have a hard time moving around because of the size of their abdomen, so they are often found hanging from the roof of their nest.
购买选项
定价:119.00元
书号:978-7-5766-0552-5
出版社:东南大学出版社