数据科学中的实用统计学(第2版)
Peter Bruce, Andrew Bruce, Peter Gedeck
陈光欣 译
出版时间:2021年10月
页数:270
统计方法是数据科学的重要组成部分,但鲜有数据科学从业人员接受过正规的统计学教育或培训,而关于统计学基础的课程和教材又很少从数据科学的角度讲解。本书以通俗易懂、分门别类的方式,专门从数据科学的角度系统地阐释重要且实用的统计学概念,侧重于介绍如何将各种统计方法应用于数据科学。
Python和R都是数据科学从业人员常用的语言。与第1版相比,本书第2版新增了更多Python示例。你将能够更全面地了解如何在数据科学项目中正确运用各种统计方法,系统梳理数据科学中的核心统计学概念,透彻理解哪些统计学概念重要、哪些不那么重要,以及为什么是这样。此外,本书还可以帮助你充分准备好应对数据科学面试。
通过本书,你将掌握以下知识。
● 为什么探索性数据分析是开启数据科学任务的关键一步
● 随机抽样如何降低偏差并提高数据集的质量
● 实验设计原则如何针对问题生成确定性答案
● 如何使用回归方法估计结果并检测异常
● 用于预测记录所属类别的主要分类方法
● 从数据中“学习”的统计机器学习方法
● 从未标记的数据中提取信息的无监督学习方法
  1. 第1章 探索性数据分析 
  2. 1.1 结构化数据的要素 
  3. 1.2 矩形数据 
  4. 1.2.1 数据框和索引 
  5. 1.2.2 非矩形数据结构 
  6. 1.2.3 扩展阅读
  7. 1.3 位置估计 
  8. 1.3.1 均值 
  9. 1.3.2 中位数和健壮的估计 
  10. 1.3.3 示例:人口和谋杀率的位置估计 
  11. 1.3.4 扩展阅读 
  12. 1.4 变异性估计 
  13. 1.4.1 标准差以及相关估计 
  14. 1.4.2 基于百分位数的估计 
  15. 1.4.3 示例:美国各州人口数量的变异性估计 
  16. 1.4.4 扩展阅读 
  17. 1.5 探索数据分布 
  18. 1.5.1 百分位数与箱线图 
  19. 1.5.2 频数表和直方图 
  20. 1.5.3 密度图和密度估计 
  21. 1.5.4 扩展阅读 
  22. 1.6 探索二元数据和分类型数据 
  23. 1.6.1 众数 
  24. 1.6.2 期望值 
  25. 1.6.3 概率 
  26. 1.6.4 扩展阅读 
  27. 1.7 相关性 
  28. 1.7.1 散点图 
  29. 1.7.2 扩展阅读 
  30. 1.8 探索两个及以上的变量 
  31. 1.8.1 六边形分箱图和等高线图(绘制数值型数据之间的关系) 
  32. 1.8.2 两个分类变量 
  33. 1.8.3 分类型数据和数值型数据 
  34. 1.8.4 多个变量的可视化 
  35. 1.8.5 扩展阅读 
  36. 1.9 小结 
  37. 第2章 数据与抽样分布 
  38. 2.1 随机抽样和样本偏差 
  39. 2.1.1 偏差 
  40. 2.1.2 随机选择 
  41. 2.1.3 数量和质量:什么时候数量更重要 
  42. 2.1.4 样本均值与总体均值 
  43. 2.1.5 扩展阅读 
  44. 2.2 选择偏差 
  45. 2.2.1 均值回归 
  46. 2.2.2 扩展阅读 
  47. 2.3 统计量的抽样分布 
  48. 2.3.1 中心极限定理 
  49. 2.3.2 标准误差 
  50. 2.3.3 扩展阅读 
  51. 2.4 Bootstrap方法 
  52. 2.4.1 重抽样与Bootstrap方法 
  53. 2.4.2 扩展阅读 
  54. 2.5 置信区间 
  55. 2.6 正态分布 
  56. 2.7 长尾分布 
  57. 2.8 学生的t分布 
  58. 2.9 二项分布 
  59. 2.10 卡方分布 
  60. 2.11 F分布 
  61. 2.12 泊松及其相关分布 
  62. 2.12.1 泊松分布 
  63. 2.12.2 指数分布 
  64. 2.12.3 估计故障率 
  65. 2.12.4 韦布尔分布 
  66. 2.12.5 扩展阅读 
  67. 2.13 小结 
  68. 第3章 统计实验与显著性检验 
  69. 3.1 A/B测试 
  70. 3.1.1 为什么要有对照组 
  71. 3.1.2 为什么只有A/B,没有C/D…… 
  72. 3.1.3 扩展阅读 
  73. 3.2 假设检验 
  74. 3.2.1 零假设 
  75. 3.2.2 备择假设 
  76. 3.2.3 单向假设检验与双向假设检验 
  77. 3.2.4 扩展阅读 
  78. 3.3 重抽样 
  79. 3.3.1 置换检验 
  80. 3.3.2 示例:Web黏性 
  81. 3.3.3 穷尽置换检验和Bootstrap置换检验 
  82. 3.3.4 置换检验:数据科学的底线 
  83. 3.3.5 扩展阅读 
  84. 3.4 统计显著性和p值 
  85. 3.4.1 p值 
  86. 3.4.2 α 
  87. 3.4.3 第 一类错误和第二类错误 
  88. 3.4.4 数据科学与p值 
  89. 3.4.5 扩展阅读 
  90. 3.5 t检验 
  91. 3.6 多重检验 
  92. 3.7 自由度 
  93. 3.8 ANOVA 
  94. 3.8.1 F统计量 
  95. 3.8.2 双向ANOVA 
  96. 3.8.3 扩展阅读 
  97. 3.9 卡方检验 
  98. 3.9.1 卡方检验:一种重抽样方法 
  99. 3.9.2 卡方检验:统计理论 
  100. 3.9.3 费希尔精确检验 
  101. 3.9.4 与数据科学的关联 
  102. 3.9.5 扩展阅读 
  103. 3.10 多臂老虎机算法 
  104. 3.11 检验力与样本容量 
  105. 3.11.1 样本容量 
  106. 3.11.2 扩展阅读 
  107. 3.12 小结 
  108. 第4章 回归与预测 
  109. 4.1 简单线性回归 
  110. 4.1.1 回归方程 
  111. 4.1.2 拟合值与残差 
  112. 4.1.3 最小二乘法 
  113. 4.1.4 预测与解释(分析) 
  114. 4.1.5 扩展阅读 
  115. 4.2 多元线性回归 
  116. 4.2.1 示例:金县房屋数据 
  117. 4.2.2 模型评估 
  118. 4.2.3 交叉验证 
  119. 4.2.4 模型选择与逐步回归 
  120. 4.2.5 加权回归 
  121. 4.2.6 扩展阅读 
  122. 4.3 使用回归进行预测 
  123. 4.3.1 外推风险 
  124. 4.3.2 置信区间与预测区间 
  125. 4.4 回归中的因子变量 
  126. 4.4.1 虚拟变量的表示方法 
  127. 4.4.2 多水平因子变量 
  128. 4.4.3 有序因子变量 
  129. 4.5 解释回归方程 
  130. 4.5.1 相关的预测变量 
  131. 4.5.2 多重共线性 
  132. 4.5.3 混淆变量 
  133. 4.5.4 交互作用与主效应 
  134. 4.6 回归诊断 
  135. 4.6.1 离群点 
  136. 4.6.2 强影响值 
  137. 4.6.3 异方差、非正态与相关误差 
  138. 4.6.4 偏残差图与非线性 
  139. 4.7 多项式回归与样条回归 
  140. 4.7.1 多项式回归 
  141. 4.7.2 样条回归 
  142. 4.7.3 广义可加模型 
  143. 4.7.4 扩展阅读 
  144. 4.8 小结 
  145. 第5章 分类 
  146. 5.1 朴素贝叶斯算法 
  147. 5.1.1 为什么进行精确贝叶斯分类是不现实的 
  148. 5.1.2 朴素贝叶斯问题求解 
  149. 5.1.3 数值型预测变量 
  150. 5.1.4 扩展阅读 
  151. 5.2 判别分析 
  152. 5.2.1 协方差矩阵 
  153. 5.2.2 费希尔线性判别分析 
  154. 5.2.3 一个简单的例子 
  155. 5.2.4 扩展阅读 
  156. 5.3 逻辑回归 
  157. 5.3.1 逻辑响应函数和logit函数 
  158. 5.3.2 逻辑回归和广义线性模型 
  159. 5.3.3 广义线性模型 
  160. 5.3.4 逻辑回归的预测值 
  161. 5.3.5 系数和优势比的解释 
  162. 5.3.6 线性回归与逻辑回归:共性与差异 
  163. 5.3.7 评估模型 
  164. 5.3.8 扩展阅读 
  165. 5.4 分类模型评估 
  166. 5.4.1 混淆矩阵 
  167. 5.4.2 稀有类问题 
  168. 5.4.3 精确度、召回率和特异度 
  169. 5.4.4 ROC曲线 
  170. 5.4.5 AUC 
  171. 5.4.6 提升度 
  172. 5.4.7 扩展阅读 
  173. 5.5 非平衡数据的处理策略 
  174. 5.5.1 欠采样 
  175. 5.5.2 过采样与上(下)加权 
  176. 5.5.3 数据生成 
  177. 5.5.4 基于成本的分类 
  178. 5.5.5 探索预测结果 
  179. 5.5.6 扩展阅读 
  180. 5.6 小结 
  181. 第6章 统计机器学习 
  182. 6.1 KNN 
  183. 6.1.1 一个小例子:预测贷款违约 
  184. 6.1.2 距离的度量 
  185. 6.1.3 独热编码 
  186. 6.1.4 标准化(归一化,z分数) 
  187. 6.1.5 K的选择 
  188. 6.1.6 KNN作为特征引擎 
  189. 6.2 树模型 
  190. 6.2.1 一个简单的例子 
  191. 6.2.2 递归分割算法 
  192. 6.2.3 测量同质性或不纯度 
  193. 6.2.4 让树停止生长 
  194. 6.2.5 预测连续的值 
  195. 6.2.6 如何使用树 
  196. 6.2.7 扩展阅读 
  197. 6.3 装袋法与随机森林 
  198. 6.3.1 装袋法 
  199. 6.3.2 随机森林 
  200. 6.3.3 变量的重要性 
  201. 6.3.4 超参数 
  202. 6.4 提升方法 
  203. 6.4.1 提升算法 
  204. 6.4.2 XGBoost 
  205. 6.4.3 正则化:避免过拟合 
  206. 6.4.4 超参数与交叉验证 
  207. 6.5 小结 
  208. 第7章 无监督学习 
  209. 7.1 主成分分析 
  210. 7.1.1 一个简单的例子 
  211. 7.1.2 计算主成分 
  212. 7.1.3 解释主成分 
  213. 7.1.4 对应分析 
  214. 7.1.5 扩展阅读 
  215. 7.2 K-均值聚类 
  216. 7.2.1 一个简单的例子 
  217. 7.2.2 K-均值算法 
  218. 7.2.3 簇的解释 
  219. 7.2.4 选择簇的数量 
  220. 7.3 层次聚类 
  221. 7.3.1 一个简单的例子 
  222. 7.3.2 树状图 
  223. 7.3.3 凝聚算法 
  224. 7.3.4 测量相异度 
  225. 7.4 基于模型的聚类 
  226. 7.4.1 多元正态分布 
  227. 7.4.2 混合正态分布 
  228. 7.4.3 选择簇的数量 
  229. 7.4.4 扩展阅读 
  230. 7.5 数据缩放与分类变量 
  231. 7.5.1 缩放变量 
  232. 7.5.2 主导变量 
  233. 7.5.3 分类数据和Gower距离 
  234. 7.5.4 混合数据聚类中的问题 
  235. 7.6 小结 
  236. 扩展阅读 
书名:数据科学中的实用统计学(第2版)
译者:陈光欣 译
国内出版社:人民邮电出版社
出版时间:2021年10月
页数:270
书号:978-7-115-56902-8
原版书书名:Practical Statistics for Data Scientists, Second Edition
原版书出版商:O'Reilly Media
Peter Bruce
 
彼得·布鲁斯(Peter Bruce),Statistics. com统计学教育学院创始人兼院长,重采样统计软件Resampling Stats的开发者,美国统计协会职业发展咨询委员会成员。
 
 
Andrew Bruce
 
安德鲁·布鲁斯(Andrew Bruce),亚马逊数据科学家、华盛顿大学统计学博士,拥有30余年的统计学和数据科学经验。
 
 
Peter Gedeck
 
彼得·格德克(Peter Gedeck),数据科学家,拥有30余年的科学计算和数据科学经验,善于开发机器学习算法。
 
 
购买选项
定价:99.80元
书号:978-7-115-56902-8
出版社:人民邮电出版社